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Chapter 1. Electrostatics I 
Notes: 
• Most of the material presented in this chapter is taken from Jackson, Chap. 1. 
• Units from the Système International (SI) will be used in this chapter. 

1.1 Mathematical Considerations  

1.1.1 Dirac’s delta function (distribution) 
a) Dirac’s delta function is defined such that 
 

 δ x − a( ) = ∞, for x = a
0, for x ≠ a

⎧
⎨
⎩

 (1.1) 

 
but with the restriction that the “area” it encloses equals 1. Therefore, whenever it is 
used it is implied that 

 
 δ x − a( )dx

−∞

∞

∫ = 1.  (1.2) 

 
b)  It is also required from the delta function that for any good function g x( )  (i.e., one 

that is differentiable everywhere any number of times, while it and its derivatives 
vanish faster than any power of 1 x  as x →∞ ) we have 

 
 g x( )δ x − a( )dx = g a( )

−∞

∞

∫ .  (1.3) 

 
Dirac’s function can be approximated with many different functions. For example, the 
function 

 

 
 
Dn x( ) = n

π
e−nx

2

          n = 1, 2, …  (1.4) 

 
can be shown to satisfy equation (1.3) when n→∞ . To prove this, we first set 
y = x − a  in the integrand of equation (1.3), and we replace δ y( )  by Dn y( )  

 

 
n
π

g y + a( )e−ny2dy = g a( )
−∞

∞

∫ .  (1.5) 

  
We next evaluate the following (with    denoting the absolute value) 
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n
π

g y + a( )e−ny2dy − g a( )
−∞

∞

∫ =
n
π

e−ny
2

g y + a( ) − g a( )⎡⎣ ⎤⎦dy−∞

∞

∫ ,  (1.6) 

 
since  

 

 
n
π

e−ny
2

dy
−∞

∞

∫ = 1. (1.7) 

 
Because it is always the case that  

 

 g y + a( ) − g a( ) ≤ y ⋅max dg
dy

⎧
⎨
⎩

⎫
⎬
⎭
,  (1.8) 

 
then, 

 

 

n
π

e−ny
2

g y + a( ) − g a( )⎡⎣ ⎤⎦dy−∞

∞

∫ ≤ max dg
dy

⎧
⎨
⎩

⎫
⎬
⎭

n
π

y e−ny
2

dy
−∞

∞

∫

≤
1
nπ
max dg

dy
⎧
⎨
⎩

⎫
⎬
⎭
→
n→∞

0.

 (1.9) 

 
Equation (1.3) is, therefore, verified with any good function g x( )  for D∞ x( ) . 

c) The derivative of the delta function can also be defined and used as follows  
 

 
g x( ) ′δ x − a( )dx

−∞

∞

∫ = g x( )δ x − a( )
−∞

∞ − ′g x( )δ x − a( )dx
−∞

∞

∫
= − ′g a( ),

 (1.10) 

 
where we integrated by parts and ′g = dg dx . 

d) Since from equation (1.1) δ x( )  is zero everywhere except at x = 0 , we can write  
 
 δ x − a( )dx

−∞

∞

∫ = δ x − a( )dx
a−ε

a+ε

∫ ,  (1.11) 

 
with ε > 0 . Then for a function y x( )  with multiple zeros 

 

 g x( )δ y x( )⎡⎣ ⎤⎦dx−∞

∞

∫ = g x y( )⎡⎣ ⎤⎦δ y( ) dydy
dx

y xi( )−ε

y xi( )+ε
∫

i
∑ ,  (1.12) 

 

since dx =
dx
dy
dy . We can, therefore, write 
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 δ y x( )⎡⎣ ⎤⎦ =
δ x − xi( )
dy
dx x= xi

i
∑ ,  (1.13) 

 
where the xi's  are the roots of the equation y x( ) = 0 . 

e) Dirac’s distribution is the derivative of the so-called Heaviside step function H x( )  
(also a distribution) 

 

 H x( ) = 1, for x > 0
0, for x < 0

⎧
⎨
⎩

 (1.14) 

 
For a good function g x( )  

 

 

dH x( )
dx

g x( )dx
−∞

∞

∫ = H x( )g x( )
−∞

∞ − H x( ) dg x( )
dx

dx
−∞

∞

∫
= −

dg x( )
dx

dx
0

∞

∫ = g 0( ).
 (1.15) 

 
From equations (1.3) and (1.15) we see that  

 

 δ x( ) = dH x( )
dx

.  (1.16) 

 
f) Finally, higher-dimensional versions of the delta function are the product of delta 

functions from each dimension. For example, in three-dimension 
 
 δ x − X( ) = δ x1 − X1( )δ x2 − X2( )δ x3 − X3( )  (1.17) 
 

vanishes everywhere except at x = X , and  
 

 δ x − X( )d 3x
ΔV∫ =

1, if ΔV  contains x = X            
0, if ΔV  does not contain x = X

⎧
⎨
⎩

 (1.18) 
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1.1.2 Tensor notation 
The Kronecker tensor is defined by 
 

 δ jk =
1, for j = k
0, for j ≠ k

⎧
⎨
⎩

 (1.19) 

 
where j  and k  are tensor indices (e.g., in a three-dimensional space the indices can take 
the value 1, 2, or 3). This tensor is useful to compactly express some vector expressions. 
For example, the dot product of two vectors can be written as 
 
 A ⋅B = δ jkAkBj = AjBj ,  (1.20) 
 
where a summation on repeated indices is implied (i.e., AjBj ≡ AjBj

j
∑ ). 

The Levi-Civita tensor is defined by 
 

 εijk =
1,   even permutation of ijk
−1,  odd permutation of ijk
0, if i = j, i = k, or j = k

⎧
⎨
⎪

⎩⎪
 (1.21) 

 
For example, ε123 = ε312 = ε231 = 1, ε213 = ε321 = ε132 = −1 , and  ε113 = ε121 = ε133 = = 0 . 
This tensor can be used to compactly express the cross product 
 
 A × B[ ]i = εijkAjBk .  (1.22) 
 
There also exist many relations that link the Kronecker and Levi-Civita tensors. Most 
notably, 
 
 εijkεimn = δ jmδkn − δ jnδkm .  (1.23) 
 
As examples of the usefulness of these tensors, consider the following vector formulas 
 

 

A × B ×C( )⎡⎣ ⎤⎦i = εijkAjεkmnBmCn

= εkijεkmnAjBmCn

= δ imδ jn − δ inδ jm( )AjBmCn

= AjCjBi − AjBjCi

= A ⋅C( )Bi − A ⋅B( )Ci ,

 (1.24) 

 
or, 
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 A × B ×C( ) = A ⋅C( )B − A ⋅B( )C,  (1.25) 
 
and with φ  and ψ  two scalar functions 
 

 

∇ ⋅ φ∇ψ( ) = ∂i φ ∂iψ( )
= ∂iφ( ) ∂iψ( ) + φ ∂i∂iψ
= ∇φ( ) ⋅ ∇ψ( ) + φ∇2ψ ,

 (1.26) 

 

where ∂i ≡
∂
∂xi

. 

1.1.3 The divergence theorem 

Consider an infinitesimal volume Δ3x  bounded by the surface of a cube whose sides 
have an area Δa  (see Figure 1.1). Defining ni  as a unit vector pointing out of the volume 
element (with i = 1,2,3 or x, y, z ) and therefore normal to the two (parallel) surfaces that 
are perpendicular to the xi -axis , we are interested in calculating the following quantity 
 
 D ⋅ni Δa

over six
surfaces

∑ ,  (1.27) 

 
where D  is some arbitrary vector, and the summation is taken over the six sides of the 
cube. Concentrating first on the surfaces corresponding to i = 1 or x , and setting the value 
of the corresponding component of D  at the “back” surface of Figure 1.1 to Dx , we can 
approximate that at the “front” surface (located a distance Δx  ahead of the previous one) 
we will have Dx + ∂Dx ∂xΔx  for the same component of D . We can then write the 
corresponding contribution to equation (1.27) as 
 

 Dx +
∂Dx

∂x
Δx⎛

⎝⎜
⎞
⎠⎟
− Dx

⎡
⎣⎢

⎤
⎦⎥
ΔyΔz =

∂Dx

∂x
ΔxΔyΔz =

∂Dx

∂x
Δ3x,  (1.28) 

 
since the unit normal vector to the front (back) surface is along ex  (−ex ). Using a similar 
procedure for the other four surfaces, it can easily be shown that  
 
 D ⋅ni Δa

over six
surfaces

∑ = ∇ ⋅D( )Δ3x.  (1.29) 

 
We can extend this treatment to an arbitrary large volume V  provided that we divide it  
into an ensemble of adjacent infinitesimal cubes. If we further denote by S  the closed 
surface that contains V , we can finally write the so-called divergence theorem 
(sometimes called Gauss’ theorem) as 
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Figure 1.1 – Illustration of the divergence theorem. 
 

 ∇ ⋅D d 3x
V∫ = D ⋅n da

S∫  (1.30) 

 
The generalization from equation (1.29) to equation (1.30) arises from the fact that the 
sides of every infinitesimal cube that is interior to the volume V  will cancel with the side 
of an adjacent cube, leaving only the exterior side of the cubes that make out the closed 
surface S . 
Similarly, if we consider the components of D  which are parallel to the surfaces of the 
infinitesimal cubes (i.e., ni × D ), it can similarly be shown that 
 

 ∇ × D d 3x
V∫ = n × D da

S∫  (1.31) 

 
Finally, we could apply the same procedure to a scalar function ψ  to get 
 

 ∇ψ d 3x
V∫ = ψn da

S∫  (1.32) 

1.1.4 Stokes’ theorem 
Let’s consider an open surface S  with an exterior right-handed contour C  that we divide 
into a large number of infinitesimal square loops (see Figure 1.2). We are interested in 
evaluating the following quantity 
 
 E ⋅dl

over four
segments

∑ ,  (1.33) 

 
where E  is some vector, and l  the right-handed contour of the infinitesimal loop (made 
up with four segment vectors) over which the summation is taken. If we denote the 
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“bottom” (top) segment vector by a  (−a ) and the “right“ (left) one by b  (−b ), we can 
approximate equation (1.33) with 
 

 

E ⋅dl
over four
segments

∑ = E ⋅a
bottom

− E + b ⋅∇( )E⎡⎣ ⎤⎦ ⋅a
top

+ E + a ⋅∇( )E⎡⎣ ⎤⎦ ⋅b
right

− E ⋅b
left

= b ⋅ a ⋅∇( )E⎡⎣ ⎤⎦ − a ⋅ b ⋅∇( )E⎡⎣ ⎤⎦
= bkaj∂ jEk − ajbk∂kE j

= ajbk ∂ jEk − ∂kE j( )
= ajbk∂mEn δ jmδkn − δ jnδkm( )
= εijka jbk( ) εimn∂mEn( )
= a × b( ) ⋅ ∇ × E( ),

 (1.34) 

 
where we have resorted to the tensor notation and used equation (1.23). If we further 
define n  as the unit vector normal to the loop’s surface and Δa  as the loop’s area, we 
have 
 
 a × b = n Δa.  (1.35) 
 
Inserting equation (1.35) into equation (1.34), and combining it with the results obtained 
for all the other loops (included in S ) using this same procedure, we can write the so-
called Stokes’ theorem  
 

 
 

∇ × E( ) ⋅n da
S∫ = E ⋅dl

C∫  (1.36) 

 
The generalization of the results obtained for one loop to the whole surface S  is possible 
because of the fact that contributions along common segments of adjacent infinitesimal 
loops that are interior to the surface S  will cancel each other, leaving only contributions 
along the exterior sides of the loops that make out the closed circuit C . 

Finally, applying the same technique to the case of a scalar function ψ  will yield the 
following relation 
 

 
 
n × ∇ψ da

S∫ = ψ dl
C∫  (1.37) 
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Figure 1.2 – Illustration of Stokes’ theorem. 

1.1.5 Green’s theorem 
We start with equation (1.30) for the divergence theorem 
 
 ∇ ⋅D d 3x

V∫ = D ⋅n da
S∫ ,  (1.38) 

 
and we let D = φ∇ψ , where φ  and ψ  are scalar functions. Using equation (1.26) we 
have 
 
 ∇ ⋅ φ∇ψ( ) = ∇φ( ) ⋅ ∇ψ( ) + φ∇2ψ  (1.39) 
 
for the integrand of the left-hand side of equation (1.38), and for the integrand of the 
right-hand side 
 

 φ∇ψ ⋅n = φ n ⋅∇( )ψ⎡⎣ ⎤⎦ = φ
∂ψ
∂n
,  (1.40) 

 
where ∂ ∂n  is the outward derivative in a direction normal to the surface S . Inserting 
equations (1.39) and (1.40) into equation (1.38) yields Green’s first identity 
 

 φ∇2ψ + ∇φ( ) ⋅ ∇ψ( )⎡⎣ ⎤⎦V∫ d 3x = φ ∂ψ
∂n

da
S∫  (1.41) 

 
Interchanging φ  and ψ  in equation (1.41) and subtracting the result from the original 
equation, we get Green’s theorem 
 

 φ∇2ψ −ψ ∇2φ⎡⎣ ⎤⎦V∫ d 3x = φ ∂ψ
∂n

−ψ ∂φ
∂n

⎡
⎣⎢

⎤
⎦⎥
da

S∫  (1.42) 
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1.2 Coulomb’s Law 
Coulomb’s Law states that the force acting between two charged bodies at rest with 
respect with each other is inversely proportional to the square of the distance between 
them, proportional to each charge, directed along the line joining them, and repulsive for 
like charges and attractive for opposite charges. 

Mathematically speaking the force defined in Coulomb’s Law is expressed as follows 
 

 F =
q1q2
4πε0

x1 − x2
x1 − x2

3 ,  (1.43) 

 
where xi  is the position of the charge qi , and 4πε0( )−1 = 10−7c2  so that the permittivity 
of vacuum  ε0  8.854 ×10

−12  (F/m) ( c  is the speed of light in vacuum, and F stands for 
“Farad”). The SI unit for charge is the coulomb (C); the electron’s charge is 

 q  1.602 ×10
−19  C. 

The electric field is defined as the force per unit charge at a given point. That is, 
 
 F = qE,  (1.44) 
 
with E  the electric field (which has units of Volts per meter (V/m)). Combining equation 
(1.43) and (1.44), it is seen that a charge q1  generates an electric field, which according 
to Coulomb’s Law is given by 
 

 E x( ) = q1
4πε0

x − x1
x − x1

3 .  (1.45) 

 
When an aggregate of charge charges is involved, the field generated is simply calculated 
from the linear superposition of the field generated by each charge 
 

 E x( ) = 1
4πε0

qi
x − x1
x − x1

3
i
∑ . (1.46) 

 
Alternatively, in the continuous limit where the charge density ρ x( )  (i.e., the amount of 
charge per unit volume) is given, then 
 

 E x( ) = 1
4πε0

ρ ′x( ) x − ′x
x − ′x 3 d

3 ′x∫ .  (1.47) 

1.3 Gauss’ Law and the Electric Field 
We consider the electric field generated by a single point charge q  that is enclosed 
within an arbitrary surface S . Let’s denote by da  an infinitesimal surface element at a 
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given point on the surface, and located a distance r  away from the charge. If the electric 
field at that point makes an angle θ  with the normal vector n  to da , then we can write 
from equation (1.45) 
 

 
E ⋅n da = q

4πε0

cos θ( )
r2

da

=
q
4πε0

dΩ,
 (1.48) 

 
since the solid angle subtended by da  at the charge is given by r2dΩ = cos θ( )da . If we 
now integrate over the whole surface we get 
 

 E ⋅n da
S∫ =

q
ε0
.  (1.49) 

 
It is important to realize that if the charge were located outside of the volume V , then the 
right-hand side of equation (1.49) would be zero. Equation (1.49) can be generalized to 
cases involving multiple charges 
 

 E ⋅n da
S∫ =

1
ε0

qi
i
∑ ,  (1.50) 

 
or a charge density 
 

 E ⋅n da
S∫ =

1
ε0

ρ ′x( ) d 3 ′x
V∫  (1.51) 

 
where V  is the volume enclosed by S . The right-hand side of equation (1.51) represents 
the total charge contained in V . Equation (1.51) is Gauss’ Law for a charge density. 
We can transform this last equation using the divergence theorem (i.e., equation (1.30)) 
to get 
 

 ∇ ⋅E −
ρ
ε0

⎛
⎝⎜

⎞
⎠⎟
d 3 ′x = 0.

V∫  (1.52) 

 
But since the volume is arbitrary, equation (1.52) implies that 
 

 ∇ ⋅E =
ρ
ε0

 (1.53) 

 
which is the differential form of Gauss’ Law of electrostatics. 
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1.4 The Scalar Potential Function 
We now go back to equation (1.47) for the electric field  
 

 E x( ) = 1
4πε0

ρ ′x( ) x − ′x
x − ′x 3 d

3 ′x∫ ,  (1.54) 

 
and we note that part of the integrand can be simplified as follows 
 

 
x − ′x
x − ′x 3 = −∇

1
x − ′x

⎛
⎝⎜

⎞
⎠⎟
.  (1.55) 

 
Inserting equation (1.55) into equation (1.54) we find a new equation for the electric field 
 

 E x( ) = −1
4πε0

∇
ρ ′x( )
x − ′x

d 3 ′x∫ . (1.56) 

 
We are now in a position to introduce the scalar potential function Φ x( )  (with units of 
Volts (V)) 
 

 Φ x( ) = 1
4πε0

ρ ′x( )
x − ′x

d 3 ′x∫  (1.57) 

 
from which the electric field can be calculated with 
 
 E x( ) = −∇Φ x( )  (1.58) 
 
Since it is always true that for any scalar function Φ x( )  we have ∇ ×∇Φ = 0 , then it 
follows from equation (1.58) that 
 
 ∇ × E = 0  (1.59) 
 
If we consider the work that is required to move a test charge q  from one point to 
another in a given electric field, we have 
 

 

W = − F ⋅dl
x1

x2∫ = −q E ⋅dl
x1

x2∫
= q ∇Φ ⋅dl

x1

x2∫ = q dΦ
x1

x2∫
= q Φ x2( ) − Φ x1( )⎡⎣ ⎤⎦.

 (1.60) 
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We see from this last result that we can equate the quantity qΦ  to the potential energy of 
the test charge. 
 
Example 
 
Use Gauss’ Law and equation (1.59) to prove the following: 
 
a) Any excess charge placed on a conductor must lie entirely on its surface. (A conductor 

by definition contains charges capable of moving freely under the action of applied 
electric fields.) 

b) A closed, hollow conductor shields its interior from fields due to charges outside, but 
does not shields its exterior from the fields due to charges placed inside it. 

c) The electric field at the surface of a conductor is normal to the surface and has a 
magnitude of σ ε0 , where σ  is the charge density per unit area on the surface (i.e., it 
is the surface charge density). 

 
Solution. 
 
a) Because of the given definition, the electric field inside a conductor must always be 

zero, since the sudden movement of the free moving charges within the conductor will 
quickly counterbalance any applied electric field. Now, let’s define a closed surface S  
that encloses the conductor completely, as well as some small amount of volume 
exterior to the conductor. From Gauss’ Law (i.e., equation (1.49)) we can write   

 

 E ⋅nda
S∫ =

q
ε0
,  (1.61) 

 
where q  is the excess charge placed on the conductor. We further break the volume 
enclosed by S  into two sub-volumes. The first one is delimited by the closed surface 
S1 , which is entirely contained within the conductor but does not include its boundary, 
while the other, delimited by a surface S2 , enclosing the boundary and the remainder 
of the volume within S  that is exterior to the conductor. We can therefore write 

 

 E ⋅nda
S∫ = E ⋅n1 da1S1∫ + E ⋅n2 da2S2∫ =

q
ε0
,  (1.62) 

 
but since the electric field in the conductor is known to be zero, then equation (1.62) 
simplifies to 
 

 E ⋅n2 da2S2∫ =
q
ε0
.  (1.63) 
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It is now straightforward to see that through a limiting process we could modify the 
boundary of S2  (and by the same token S1 ) such that the volume it encloses is limited 
to the surface of the conductor. It follows that the excess charge has to be located on 
this surface. 
 

b) We consider three volumes: one enclosing the cavity at the interior of the conductor 
(with a boundary S1  that does not include the inner boundary of the conductor), a 
second (of boundary S2 ) encloses entirely, and only, the conductor, and another 
(boundary S3 ) enclosing the volume exterior to the conductor. If we first place a 
charge qint  within S1  the free moving charges of the conductor will rearrange 
themselves such that the field in the conductor is zero. That is, charges of polarity 
opposite to qint  will migrate to the inner surface of the conductor in such a way that 
the electric field in the conductor is zero everywhere. Furthermore, because of Gauss’ 
Law the total charge on the inner surface must equal −qint . But since the conductor 
must remain globally neutral, it must be that a charge of +qint  will migrate to the outer 
surface of the conductor. Then, by Gauss’s Law the electric field in S3  caused by the 
charges within S1  and S2  must obey the following relation  
 

 E ⋅n1 da1S1∫ + E ⋅n2 da2S2∫ =
qint
ε0
.  (1.64) 

 
That is, the region external to the conductor is not shielded by charges located within 
the cavity. 
On the other hand, if we place a charge qext  in the volume contained in S3 , then free 
moving charges within the conductor will migrate to the outer surface of the conductor 
to ensure that the electric field is zero everywhere within the conductor. More 
precisely, charges of polarity opposite to qext  will be located on a part of the outer 
surface of the conductor that is closer to the external charge (i.e., where cos θ( ) < 0  in 
equation (1.48)), and charge of like polarity to qext  will be on the rest of the outer 
surface (i.e., where cos θ( ) > 0  in equation (1.48)). The important thing to realize is 
that the total charge on the outer surface of the conductor is equal to zero, and since 
the electric field within the conductor is also zero, then there will be no migration of 
charges to the inner surface of the conductor (caused by the presence of qext  outside 
the conductor). That is, the volume located within the outer boundary of the conductor 
is unaffected by qext  owing to the rearrangement of charges on that boundary, and the 
cavity is shielded from charges external to the conductor. 

 
c) We first refer to the infinitesimal pillbox of Figure 1.3 that straddles the outer 

boundary of the conductor with S . From Gauss’ Law we know that  
 

 E ⋅nda
S∫ =

q
ε0
,  (1.65) 
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where S  is the closed surface delimiting the pillbox, n  is the unit vector normal to S , 
and q  is the total charge located inside the box. In the limit where we let the sides of 
the pillbox shrink to an infinitesimally small size, q  is then completely located on the 
boundary, and we can simplify equation (1.65) to 
 

 E⊥ − Econd( ) ⋅nΔa = q
ε0
,  (1.66) 

 
with Δa  the area of the top and bottom surface of the pillbox. We know, however, that 
the electric field Econd  inside the conductor is zero. We then find that the magnitude of 
the electric field E⊥  perpendicular to the surface of the connector is  
 

 E⊥ =
σ
ε0
,  (1.67) 

 
where σ = q Δa  is the surface charge density. Finally, considering the infinitesimal 
loop of Figure 1.3, and letting their sides shrink to an infinitesimally small size, we 
find that the tangential electric field at the surface of the conductor is zero. We can 
ascertain this by integrating the electric field around the loop, and using Stokes’ 
theorem with equation (1.59). More precisely, 
 

 
 
E ⋅dl

C∫ = ∇ × Eda = 0
A∫ ,  (1.68) 

 
where A  is the (open) surface covered by the loop. When the sides of the loop are 
infinitesimally small we have (remembering that electric field inside the conductor is 
zero) 
 

  E ⋅ Δl = 0.  (1.69) 
 
The combination of equations (1.67) and (1.69) the fact the electric field at the surface 
of the conductor is perpendicular to the surface and has a magnitude of σ ε0 . 

1.5 The Equations of Laplace and Poisson 
If we start with equation (1.53) for the divergence of the electric field (i.e., ∇ ⋅E = ρ ε0 ) 
and we combine it with equation (1.58) relating E  to the potential (i.e., E = −∇Φ ), we 
get the so-called Poisson equation 
 

 ∇2Φ = −
ρ
ε0

 (1.70) 

 
In regions where charges are absent, we have the Laplace equation 
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 ∇2Φ = 0  (1.71) 
 
Incidentally, the Poisson equation can be used to evaluate an important relation that 
connects the function 1 r , which often appears in electrostatics, and the Dirac delta 
function. If we consider the scalar potential at a position x  due to a single point charge q  
located at ′′x , from equation (1.70) and ρ x( ) = qδ x − ′′x( )  we get 
 

 ∇2Φ x( ) = −
q
ε0

δ x − ′′x( ).  (1.72) 

 
But we also know from equation (1.57) that  
 

 Φ x( ) = q
4πε0 x − ′′x

.  (1.73) 

 
Hence, it must be the case that 
 

 ∇2 1
x − ′′x

⎛
⎝⎜

⎞
⎠⎟
= −4πδ x − ′′x( )  (1.74) 

 

1.6 Boundary Conditions, and Single- and Double-layer Surface-
charge Distributions 

Let’s consider the interface between two different media delimited by a surface S  (with a 
unit normal vector n  directed from medium 1 to medium 2) on which a surface-charge 
density σ x( )  is distributed. Let the volume V  enclosed by the surface be that of a small 
pillbox (see Figure 1.3). Using equation (1.51) (i.e., Gauss’ Law) we can write  
 

 E ⋅da
S∫ =

1
ε0

ρ ′x( ) d 3 ′x
V∫ .  (1.75) 

 
In the limit where the height of the pillbox is made infinitesimally small, so that its end 
surfaces (of area Δa ) are just on either side of the boundary, we have 
 

 E2 − E1( ) ⋅n Δa = σ
ε0

Δa.  (1.76) 

 
We therefore find that there is a discontinuity in the normal component of the electric at 
the boundary between the two media, which is proportional to the surface-charge density. 
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Figure 1.3 – The boundary surface between two media. We determine the boundary 
conditions for the electric field and the scalar potential by considering a small pillbox S  
and a small rectangular contour C .  

Alternatively, we consider a rectangular loop C  that straddles the boundary as shown in 
Figure 1.3 (with the vector t  normal to both the plane of the loop and n ), and we let the 
segments parallel to n become infinitesimally short. We can write from equation (1.59) 
and Stokes’ theorem (i.e., equation (1.36)) that 
   
 

 
E ⋅dl

C∫ = t × n( ) ⋅ E2 − E1( )Δl = 0,  (1.77) 

 
with Δl  the length of the segments of C  that are parallel to the boundary. Since 
a ⋅ b × c( ) = c ⋅ a × b( ) , and the orientation of the vector t  (and, therefore, the orientation 
of the contour C ) is arbitrary on the surface of the boundary, we can transform equation 
(1.77) to 
 
 n × E2 − E1( ) = 0.  (1.78) 
 
That is, the component of the electric field tangential to the boundary is continuous. 

1.6.1 Single-layer charge distributions 
The problem of a single-layer surface charge was actually solved above where it was 
found that  
 

 
E2 − E1( ) ⋅n = σ

ε0
E2 − E1( ) × n = 0.

 (1.79) 

 
An equation for the scalar potential can also be derived for this problem by replacing 
ρd 3x  with σ da  in equation (1.57). We then find the potential at any point in space from 
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 Φ x( ) = 1
4πε0

σ ′x( )
x − ′x

d ′a
S∫ .  (1.80) 

 
Although the continuity or discontinuity of the components of the electric field are well 
specified from equations (1.79), it is not clear from equation (1.80) if the potential is 
continuous or not, or even if it is finite. For example, it is seen that the integrand becomes 
improper when the point of observation is located on the surface delimiting the boundary. 
One should, therefore, verify the continuity and finiteness of Φ , and we will make use of 
the following limiting process to do so.  

We assume that the surface-charge density σ ′x( )  is everywhere bounded, and we 
circumscribe a small disk or radius α  centered on a point of observation x  located on 
the boundary. First, it is clear that the potential due the surface charges outside the disk is 
a bounded and continuous function of position in the neighborhood of x . If σmax  is the 
maximum value that the surface-charge density can take over the disk, it must be true that 
 

 
1
4πε0

σ ′x( )
x − ′x

d ′a
disk∫ <

σmax

2ε0

1
r
r dr

0

α

∫ =
ασmax

2ε0
,  (1.81) 

 
where r = ′x − x . Since from equation (1.81) this contribution to the potential vanishes 
with the radius of the disk, we find that the potential due to a surface-charge distribution 
is a bounded, continuous function of position at all points, both on and off the surface. 
This result can easily be extended to volume-charge distributions by considering a sphere 
centered on the position of observation instead of a disk. 

1.6.2 Double- or dipole-layer distributions  
A dipole-layer can be imagined as a surface generated by spreading positive charge of 
density +σ x( )  over the positive side of a regular surface S , and an identical distribution 
of opposite sign on its negative side. The result is a double-layer of charges separated by 
an infinitesimal distance d x( )  (see Figure 1.4). The dipole moment per unit area, of 
strength D x( ) , is a vector directed along the unit normal vector n  going from the 
negative to the positive sides of S , and is defined by the following limit 
 
 D x( ) = nD x( ) = n lim

d x( )→0
σ x( )d x( ).  (1.82) 

  
Using equation (1.80), we can express the potential due to the layer as 
 

 Φ x( ) = 1
4πε0

σ ′x( )
x − ′x

d ′a
S+∫ −

1
4πε0

σ ′x( )
x − ′x + nd

d ′a
S−∫ . (1.83) 

 
Since the Taylor expansion of any function ψ  is defined by 
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 ψ x + a( ) = 1
n!
a ⋅∇( )nψ x( )

n=0

∞

∑ ,  (1.84) 

 
we can approximate 
 

 
 

1
x − ′x + nd


1

x − ′x
− dn ⋅ ′∇

1
x − ′x

⎛
⎝⎜

⎞
⎠⎟
,  (1.85) 

 
where ′∇  denotes the gradient relative to the components of ′x . Inserting equation (1.85) 
into equation (1.83) we find, in the limit d ′x( )→ 0 , 
 

 Φ x( ) = 1
4πε0

D ′x( ) ⋅ ′∇
1

x − ′x
⎛
⎝⎜

⎞
⎠⎟
d ′a

S∫ .  (1.86) 

 
Since  
 

 n ⋅ ′∇
1

x − ′x
⎛
⎝⎜

⎞
⎠⎟
d ′a = −

cos θ( )
x − ′x 2 d ′a = −dΩ,  (1.87) 

 
where dΩ  is the solid angle subtended by d ′a  at the point of observation (see Figure 
1.5), then equation (1.86) can be written as  
 

 Φ x( ) = −
1
4πε0

D ′x( )dΩ
S∫ . (1.88) 

 
We can use equation (1.88) to test the continuity (or lack thereof) of the potential across 
the dipole-layer. To do so, we use the same technique as was used for the single-layer 
surface-charge distribution, and separate the layer in a small disk centered on the point of 
observation and a remainder. Obviously, the contribution of the remainder is continuous 
across the plane of the hole occupied by the disk. If the disk is made infinitesimally 
small, then the dipole-layer can be considered as being constant and taken out of the 
integral. It is then seen that the potential just below the disk is given by 
 

 Φ− = −
D
4πε0

dΩ
disk∫ = −

D
2ε0

,  (1.89) 

 
since the disk covers half of space. Likewise, we find that the potential on the outer side 
of the disk is given by Φ+ = D 2ε0 , and that there is a discontinuity in the potential 
given by 
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Figure 1.4 – Dipole-layer geometry. 
 

 Φ+ − Φ− =
D
ε0
.  (1.90) 

 
Using a pillbox, as we did earlier, that straddle the double-layer boundary, it is 
straightforward to see that the component of the electric field normal to the surface is 
now continuous since there is a net charge of zero within the box. That is, 
 
 E+ − E−( ) ⋅n = 0.  (1.91) 
  
On the other hand, the component of the electric field tangential to the surface is not 
continuous. We now use the closed rectangular contour C  of Figure 1.3, and a limiting 
process to determine the nature of the discontinuity. We denote by 1 the left corner 
located in medium 2, and proceed counterclockwise from there for 2, 3, and 4, and we 
use the notation Φi , with i = 1, 2, 3, 4 , for the potential at each of the corners points. We 
know from equation (1.90) that the potential difference between points 1 and 2 is 
 

 Φ1 − Φ2 =
D
ε0
,  (1.92) 

 
corners points. We know from equation (1.90) that the potential difference between 
points 1 and 2 is 
 

 Φ1 − Φ2 =
D
ε0
,  (1.93) 

 
where we have taken the value of the dipole strength to be D  at these points. With Δl  
the length of the segments parallel to the surface (boundary), the dipole strength at point 
3 will be D +∇D ⋅ Δl . The potential difference between these two points will then be 
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Figure 1.5 – The solid angle subtended by d ′a  at the point of observation P .  
 

 Φ4 − Φ3 =
1
ε0

D +∇D ⋅ Δl( ). (1.94) 

 
Now, we must also have 
 
 Φ2 − Φ1( ) + Φ3 − Φ2( ) + Φ4 − Φ3( ) + Φ1 − Φ4( ) = 0,  (1.95) 
 
or, 
 

 −
D
ε0

+ Φ3 − Φ2( ) + 1
ε0

D +∇D ⋅ Δl( ) + Φ1 − Φ4( ) = 0.  (1.96) 

 
Abbreviating ΔΦ+ = Φ4 − Φ1  and ΔΦ− = Φ3 − Φ2 , equation (1.96) reduces to 
 

 ΔΦ+

Δl
−
ΔΦ−

Δl
=
1
ε0

∇D ⋅h,  (1.97) 

 
where h = Δl Δl  and is, therefore, a unit vector tangent to the boundary. If we take the 
limit when Δl→ 0 , we have 
 

 E+ ⋅h = − lim
Δl→0

ΔΦ+

Δl
,  (1.98) 

 
and a similar relation between E−  and ΔΦ−  (see equation (1.58)). Equation (1.97) then 
becomes 
 

 E+ − E−( ) ⋅h = −
1
ε0

∇D ⋅h.  (1.99) 

 
Finally, since from the previous definitions of n and t  we can also write h = n × t , and 
a ⋅ b × c( ) = c ⋅ a × b( ) , we can transform equation (1.99) to 
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 E+ − E−( ) × n = −
1
ε0

∇D × n.  (1.100) 

 
 
 
In equation (1.100) we dropped the dot product with the unit vector t  from both sides of 
the equality, since the orientation of the contour C  (and therefore the orientation of t ) is 
arbitrary. It is seen from this result that the component of the electric field tangential to 
the boundary is discontinuous in general, unless the strength of the dipole-layer is 
constant along the surface (i.e. ∇D × n = 0 ).  

1.7 Green’s Theorem, the Poisson and Laplace Equations, and the 
Scalar Potential 

Equation (1.57) for the definition of the scalar potential really only works well when the 
charges involved in the problem at hand are localized in space, and not outside of the 
region of interest. Unfortunately, this is not always the case. We are often required to take 
into account the presence of other charges or fields located in, or emanating from, remote 
regions by setting appropriate boundary conditions at the confines of a volume suitable to 
the problem at hand. This is done using equation (1.42) for Green’s theorem, while 
setting 
 

 φ = Φ      and      ψ =
1
R
≡

1
x − ′x

.  (1.101) 

 
Now, let’s consider a bounded charge density ρ ′x( )  distributed somewhere in space, and 
a volume V = V1  delimited by a surface S . It is not necessary that S  encloses all of the 
charge, or even any of it. With x  the observation point, the function ψ  is improper at 
x = ′x  (or R = 0 ), we will therefore exclude any singularity by circumscribing x  with a 
small sphere S1  of radius r1  (see Figure 1.6). The volume V  is then bounded externally 
by S  and internally by S1 . Within V  both φ  and ψ  now satisfy the requirements of 
Green’s theorem, which can now be written as (with ∇2ψ = 0 ) 
 

 ∇2Φ
R

d 3 ′x
V∫ =

1
R
∂Φ
∂ ′n

− Φ
∂
∂ ′n

1
R

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
d ′a

S+S1∫ .  (1.102) 

 
The left-hand side of equation (1.102) can be simplified by making use of the Poisson 
equation. We therefore insert equation (1.70) into equation (1.102) and we now have 
 

 −
1
ε0

ρ ′x( )
R

d 3 ′x
V∫ =

1
R
∂Φ
∂ ′n

− Φ
∂
∂ ′n

1
R

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
d ′a

S+S1∫ .  (1.103) 
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Figure 1.6 – Application of Green’s theorem to a region V  bounded externally by a 
surface S  and internally by a sphere S1 . 

We can also simplify the right-hand side of equation (1.103) by noting that over the 
sphere S1 , for which the unit normal vector ′n  is oriented radially inward, the following 
relations hold 
 

 ∂Φ
∂ ′n

= −
∂Φ
∂R

,     and     ∂
∂ ′n

1
R

⎛
⎝⎜

⎞
⎠⎟

R= r1

=
1
r1

2 .  (1.104) 

 
Furthermore, if r1  is chosen to be infinitesimally small, then Φ and ∂Φ ∂R  are basically 
constant over the sphere (which is centered at x ) and we have  
 

 1
R
∂Φ
∂ ′n

− Φ
∂
∂ ′n

1
R

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
d ′a

S1∫ = −
1
r1
4πr1

2 ∂Φ
∂R x

−
1
r1
2 4πr1

2Φ x( ).  (1.105) 

 
Taking the limit r1 → 0  we finally get 
 

 Φ x( ) = 1
4πε0

ρ ′x( )
R

d 3 ′x
V∫ +

1
4π

1
R
∂Φ
∂ ′n

− Φ
∂
∂ ′n

1
R

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
d ′a

S∫  (1.106) 

 
We know, from the discussion that follows equation (1.81), that the first integral on the 
right-hand side of equation (1.106) is valid even when the extent of the volume is such 
that R = 0  is possible at some point. Equation (1.106) is thus seen to be the solution to 
the Poisson equation ∇2Φ = −ρ ε0 . In the particular case where the volume V  contains 
no charge, the equation for the potential reduces to 
 

 Φ x( ) = 1
4π

1
R
∂Φ
∂ ′n

− Φ
∂
∂ ′n

1
R

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
d ′a

S∫ .  (1.107) 
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It is, therefore, apparent that the surface integral appearing in equations (1.106) and 
(1.107) represents the contribution to the potential at x  of all charges that are exterior to 
V  (the volume integral in equation (1.106) being, obviously, the contribution on the 
charges inside of it). It then follows that equation (1.107) is the solution to the Laplace 
equation ∇2Φ = 0 . If there are no charges exterior to V , the surface integral must vanish 
and we recover equation (1.57) from equation (1.106) for the value of the potential 
Φ x( ) , as expected. 

Finally, referring to equations (1.80) and (1.86), we note that the two terms arising from 
the surface integral in equation (1.106) are equivalent to the potential due to, 
respectively, a single-layer and a dipole-layer surface-charge distributions spread over 
S  when 
 

 σ ′x( ) = ε0
∂Φ
∂ ′n

     and     D ′x( ) = ε0Φ ′x( ).  (1.108) 

 
Therefore, the charges outside S  can (mathematically) be replaced by equivalent single- 
and double-layer distributions, of which the densities are given by equations (1.108), 
without modifying in any way the potential at the interior points. It is important to note, 
however, that the potential due to these surface distributions does not correspond at all 
to that arising from the true charge distribution outside S . In fact, we know from the first 
of equations (1.79) that the component of the electric field normal to the surface is 
discontinuous at S  such that 
 

 E2 − E1( ) ⋅ ′n =
σ
ε0
,  (1.109) 

 
or, 
 

 ∂Φ
∂ ′n

⎛
⎝⎜

⎞
⎠⎟
1

−
∂Φ
∂ ′n

⎛
⎝⎜

⎞
⎠⎟
2

=
σ
ε0
,  (1.110) 

 
where the indices 1 and 2 refer to the inner and outer sides of S , respectively (see Figure 
1.6). But since the normal derivative in equation (1.108) is calculated inside S , it follows 
from equation (1.110) that  
 

 ∂Φ
∂ ′n

⎛
⎝⎜

⎞
⎠⎟
2

= 0.  (1.111) 

 
Moreover, from equation (1.93), the discontinuity in the potential at S  is given by 
 

 Φ1 − Φ2 =
D
ε0
,  (1.112) 
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and, substituting the second of equations (1.108) for Φ1 , we find that 
 
 Φ2 = 0.  (1.113) 
 
Applying equation (1.106) to V2 , with the fact that ρ = 0  everywhere in that region, tells 
us that the constraint ∇2Φ = 0  must be fulfilled by the corresponding solution. 
Consequently, the potential within V2  is completely defined by its boundary conditions at 
S  (i.e., Φ2  and ∂Φ ∂ ′n( )

2
), but these have already been shown to vanish through 

equations (1.113) and (1.111). We conclude that the equivalent surface layers specified 
by equations (1.108) are just those required to reduce both the potential and the electric 
field to zero at every point outside S . As was mentioned before, this does not correspond 
to the actual potential generated by the true charges outside S . 
Example 
Consider the problem of a charge q  located at a distance Z  away from a point at x . We 
know Coulomb’s Law that the potential at the observer is simply given by 
 

 Φ x( ) = q
4πε0Z

. (1.114) 

 
However, if we circumscribe the point at x  with an imaginary sphere of volume V  
enclosed in a surface S  and devoid of any other charge, we should be able to obtain 
equation (1.114) using Green’s theorem (i.e., equation (1.106)). We denote the radius of 
the sphere by R , and the vector linking the charge to a point on S  by r  (see Figure 1.7). 
We use spherical coordinates, such that a point on S  has the coordinates (with x  as 
origin) 
 

 
R = x ex + yey + zez
= Rsin θ( )cos ϕ( )ex + Rsin θ( )sin ϕ( )ey + Rcos θ( )ez .

 (1.115) 

 
Since there are no charges within the volume V , the potential at x  will be given by 
 

 Φ x( ) = 1
4π

1
R
∂Φ
∂ ′n

− Φ
∂
∂ ′n

1
R

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
d ′a

S∫ .  (1.116) 

 
 
 
 



25 

 
Figure 1.7 – The potential of a point charge q  at x .  

Referring to Figure 1.7, we see that at the surface S  
 

 

′n = eR
∂
∂ ′n

= ′n ⋅∇ = ∂
∂R

∂
∂ ′n

1
R

⎛
⎝⎜

⎞
⎠⎟ = − 1

R2

Φ = q
4πε0 r

= q
4πε0 R2 − 2RZ cos θ( ) + Z 2( )1 2

∂Φ
∂ ′n

= q
4πε0

Z cos θ( )− R
R2 − 2RZ cos θ( ) + Z 2( )3 2

.

 (1.117) 

 
Using these equations, we get for the integrand of equation (1.116) 
 

 

1
R
∂Φ
∂ ′n

−Φ ∂
∂ ′n

1
R

⎛
⎝⎜

⎞
⎠⎟ =

q
4πε0

Z
R2

Z − Rcos θ( )
R2 − 2RZ cos θ( ) + Z 2( )3 2

= − q
4πε0

Z
R2

∂
∂Z

1
R2 − 2RZ cos θ( ) + Z 2( )1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 (1.118) 

 
Inserting this equation into equation (1.116) we can calculate the potential at x  
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Φ x( ) = − q
16π 2ε0

Z
R2

∂
∂Z

dϕ R2 sin θ( )dθ
R2 − 2RZ cos θ( ) + Z 2( )1 20

π

∫0

2π

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − qZ
8πε0

∂
∂Z

1
RZ

R2 − 2RZ cos θ( ) + Z 2
0

π⎡

⎣
⎢

⎤

⎦
⎥

= − qZ
8πε0

∂
∂Z

1
RZ

R2 + 2RZ + Z 2 − R2 − 2RZ + Z 2( )⎡
⎣⎢

⎤
⎦⎥

= − qZ
8πε0

∂
∂Z

1
RZ

R + Z − R − Z( )⎡
⎣⎢

⎤
⎦⎥
.

 (1.119) 

 
 
But since, from Figure 1.7, Z > R  
 

 
Φ x( ) = −

qZ
8πε0

∂
∂Z

1
RZ

R + Z − Z + R( )⎡
⎣⎢

⎤
⎦⎥

= −
qZ
8πε0

∂
∂Z

2
Z

⎡
⎣⎢

⎤
⎦⎥
,

 (1.120) 

 
and finally 
 

 Φ x( ) = q
4πε0Z

. (1.121) 

 
We find, then, that the field calculated using the boundary conditions on the (arbitrary) 
surface S  (within which there are no charges) gives the same result as that simply 
obtained with Coulomb’s Law (i.e., equation (1.114)). 
It is important to realize, as can be suspected from the previous example, that the 
boundary conditions (Φ and ∂Φ ∂ ′n  on the surface, for the so-called Cauchy boundary 
conditions) cannot be specified arbitrarily. In practice, one usually defines an electrostatic 
boundary-value problem by specifying either the potential (Φ  for the Dirichlet boundary 
conditions), or the electric field (or ∂Φ ∂ ′n , for the Neumann boundary conditions) at the 
boundary. Independent choices for the two types of boundary conditions will generally 
lead to two different solutions for the potential within the surface. In other words, only 
when Φ and ∂Φ ∂ ′n  are consistently specified (as in the problem above) can the Cauchy 
boundary conditions be used. 

1.8 Solutions Using the Green Function 
Earlier, when using Green’s theorem to find an expression for the scalar potential, we set 
 

 φ = Φ      and      ψ =
1
R
≡

1
x − ′x

.  (1.122) 
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It turns out, however, that the solution thus obtained (i.e., equation (1.106)) is not the 
most general one can get. In fact, we can set instead of the last of equations (1.122) 
 

 ψ ≡ G x, ′x( ) = 1
x − ′x

+ F x, ′x( ),  (1.123) 

 
with  
 
 ∇2G x, ′x( ) = −4πδ x − ′x( ),  (1.124) 
 
and, therefore, the function F x, ′x( )  must satisfy 
 
 ∇2F x, ′x( ) = 0  (1.125) 
 
within the volume V . With these conditions, the application of Green’s theorem (using a 
procedure equivalent to that which led to equation (1.106) yields 
 

 
Φ x( ) = 1

4πε0
ρ ′x( )G x, ′x( )d 3 ′x

V∫

+
1
4π

G x, ′x( ) ∂Φ
∂ ′n

− Φ
∂G x, ′x( )

∂ ′n
⎡
⎣⎢

⎤
⎦⎥
d ′a

S∫
 (1.126) 

 
The advantage of this formulation arises from the presence of F x, ′x( ) , as it provides us 
with the necessary degree of freedom to select the desired type of boundary conditions 
(i.e., either Dirichlet or Neumann). This is because the condition expressed by equation 
(1.125) equates the contribution of F x, ′x( )  to the potential to that of a system of charges 
external to V . More precisely, we can choose the potential F x, ′x( ) 4πε0  such that, 
when combined with that of the point charge inside V  and present in the Green function 
(i.e., 4πε0 x − ′x⎡⎣ ⎤⎦

−1
), the total potential G x, ′x( ) 4πε0  on, or its outward derivative to, 

the surface S  has the required characteristics. For the Dirichlet boundary conditions, 
we specify that the total potential GD x, ′x( ) 4πε0  cancels everywhere on the surface, or 
 
 GD x, ′x( ) = 0,           for ′x  on S,  (1.127) 
 
and the potential within V  is determined (from equation (1.126)), if it is known on S , by 
 

 Φ x( ) = 1
4πε0

ρ ′x( )G x, ′x( )d 3 ′x
V∫ −

1
4π

Φ
∂G x, ′x( )

∂ ′n
d ′a

S∫ . (1.128) 
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On the other hand, for the Neumann boundary conditions we cannot set ∂GN ∂ ′n = 0  
since from the divergence theorem 
 

 

∇2GN x, ′x( )d 3 ′x
V∫ = ∇ ⋅∇GN x, ′x( )d 3 ′x

V∫
= ′n ⋅∇GN x, ′x( )d ′a

S∫
=

∂GN x, ′x( )
∂ ′n

d ′a
S∫ ,

 (1.129) 

 
and from equation (1.124) ∇2GN x, ′x( )d 3 ′x

V∫ = −4π . The simplest boundary condition 

for the outward derivative of the Green function is therefore  
  

 
∂GN x, ′x( )

∂ ′n
= −

4π
S

,           for ′x  on S.  (1.130) 

 
The potential within V  is determined if its outward derivative is known on S  
 

 Φ x( ) = Φ S +
1
4πε0

ρ ′x( )GN x, ′x( )d 3 ′x
V∫ +

1
4π

∂Φ
∂ ′n

GN x, ′x( )d ′a
S∫ ,  (1.131) 

 
where Φ S  is the average of the potential over S . 

It is in principle possible to solve any electrostatic boundary-value problem using the 
Green function formalism. This statement implies, however, that the Green function is 
known a priori, or that it can be evaluated. Unfortunately, this is not always true as the 
form of the Green function can only be evaluated for relatively simple surface 
geometries. For this reason, one often resorts to other techniques that are not necessarily 
closely related to this formalism. 


